Mysql 性能优化教程

Mysql 性能优化教程

目录

目录…………………………………………………………………………………………………………….……....... 1

背景及目标………………………………………………………………………………………………………......... 2

Mysql 执行优化……………………………………………………………………………………………….......… 2

认识数据索引……………………………………………………………………………………………..............… 2

为什么使用数据索引能提高效率………………………………………………....................………………. 2

如何理解数据索引的结构……………………………………………………….....................……………….. 2

优化实战范例………………………………………………………………….....................…………………….. 3

认识影响结果集……………………………………………………………….............………………………….. 4

影响结果集的获取……………………………………………………………....................……………………. 4

影响结果集的解读………………………………………………………………...................…………………. 4

常见案例及优化思路……………………………………………………………...................………………… 5

理解执行状态…………………………………………………………………...........…………………………… 7

常见关注重点………………………………………………………………..................……………………….. 7

执行状态分析………………………………………………………………….................…………………….. 8

分析流程……………………………………………………………………................………………………… 9

常见案例解析…………………………………………………………….................………………………… 11

总结…………………………………………………………………………..................……………………….. 12

Mysql 运维优化………………………………………………………………….……………………………. 14

存储引擎类型………………………………………………………………….........…………………………. 14

内存使用考量……………………………………………………………………........………………………. 14

性能与安全性考量…………………………………………………………………….......………………… 14

存储/写入压力优化………………………………………………………………......…………………….. 15

运维监控体系………………………………………………………………………......……………………. 15

Mysql 架构优化…………………………………………………………………….………………………. 17

架构优化目标………………………………………………………………………………….....…………. 17

防止单点隐患……………………………………………………………………………............………… 17

方便系统扩容……………………………………………………………………...........………………… 17

安全可控,成本可控………………………………………………………..........……………………. 17

分布式方案……………………………………………………………………...…………………………. 18

分库&拆表方案……………………………………………………………….........…………………… 18

反范式设计(冗余结构设计)…………………………………………........…………………….. 20

主从架构………………………………………………………………………….........…………………. 21

故障转移处理………………………………………………………………........……………………… 22

缓存方案………………………………………………………………………………………………….. 22

缓存结合数据库的读取………………………………………………......…………………………. 22

缓存结合数据库的写入……………………………………………......……………………………. 23

总结……………………………………………………………..…………………………………………. 24

背景及目标

l  针对用户群为已经使用过mysql环境,并有一定开发经验的工程师

l  针对高并发,海量数据的互联网环境。

l  本文语言为口语,非学术标准用语。

l  以实战和解决具体问题为主要目标,非应试,非常规教育。友情提醒,在校生学习本教程可能对成绩提高有害无益。

l  非技术挑战,非高端架构师培训,请高手自动忽略。

l  本文档在2011年7月-12月持续更新,加强了影响结果集分析的内容并增补优化实战案例若干。

Mysql 执行优化

认识数据索引

为什么使用数据索引能提高效率

n  关系型数据库的数据索引(Btree及常见索引结构)的存储是有序的。

n  在有序的情况下,通过索引查询一个数据是无需遍历索引记录的

n  关系型数据库数据索引的查询效率趋近于二分法查询效率,趋近于 log2(N)。

n  极端情况下(更新请求少,更新实时要求低,查询请求频繁),建立单向有序序列可替代数据索引。

n  HASH索引的查询效率是寻址操作,趋近于1次查询,比有序索引查询效率更高,但是不支持比对查询,区间查询,排序等操作,仅支持key-value类型查询。不是本文重点。

如何理解数据索引的结构

n  数据索引通常默认采用btree索引,(内存表也使用了hash索引)。

n  仅就有序前提而言,单向有序排序序列是查找效率最高的(二分查找,或者说折半查找),使用树形索引的目的是为了达到快速的更新和增删操作。

n  在极端情况下(比如数据查询需求量非常大,而数据更新需求极少,实时性要求不高,数据规模有限),直接使用单一排序序列,折半查找速度最快。

n  在进行索引分析和SQL优化时,可以将数据索引字段想象为单一有序序列,并以此作为分析的基础。涉及到复合索引情况,复合索引按照索引顺序拼凑成一个字段,想象为单一有序序列,并以此作为分析的基础。

n  一条数据查询只能使用一个索引,索引可以是多个字段合并的复合索引。但是一条数据查询不能使用多个索引。

优化实战范例

l  实战范例1: ip地址反查

n  资源: Ip地址对应表,源数据格式为  startip, endip, area

源数据条数为 10万条左右,呈很大的分散性

n  目标:    需要通过任意ip查询该ip所属地区

性能要求达到每秒1000次以上的查询效率

n  挑战:    如使用 between startip and endip 这样的条件数据库操作,因为涉及两个字段的between and, 无法有效使用索引。

如果每次查询请求需要遍历10万条记录,根本不行。

n  方法:    一次性排序(只在数据准备中进行,数据可存储在内存序列)

折半查找(每次请求以折半查找方式进行)

l  实战范例2:目标:查找与访问者同一地区的异性,按照最后登录时间逆序

n  挑战:高访问量社区的高频查询,如何优化。

查询SQL: select * from user where area=’$area’ and sex=’$sex’ order by lastlogin desc limit 0,30;

建立复合索引并不难, area+sex+lastlogin 三个字段的复合索引,如何理解?

n  解读:首先,忘掉btree,将索引字段理解为一个排序序列。

另外,牢记数据查询只能使用一个索引,每个字段建立独立索引的情况下,也只能有一条索引被使用!

如果只使用area会怎样?搜索会把符合area的结果全部找出来,然后在这里面遍历,选择命中sex的并排序。 遍历所有 area=’$area’数据!

如果使用了area+sex,略好,仍然要遍历所有area=’$area’ and sex=’$sex’数据,然后在这个基础上排序!!

Area+sex+lastlogin复合索引时(切记lastlogin在最后),该索引基于area+sex+lastlogin 三个字段合并的结果排序,该列表可以想象如下。

广州女$时间1

广州女$时间2

广州女$时间3

广州男

….

深圳女

….

数据库很容易命中到 area+sex的边界,并且基于下边界向上追溯30条记录,搞定!在索引中迅速命中所有结果,无需二次遍历!

认识影响结果集

影响结果集的获取

n  通过Explain 分析SQL,查看 rows 列内容

n  通过慢查询日志的Rows_examined: 后面的数字

n  影响结果集数字是查询优化的重要中间数字,工程师在开发和调试过程中,应随时关注这一数字。

影响结果集的解读

n  查询条件与索引的关系决定影响结果集。

u  影响结果集不是输出结果数,不是查询返回的记录数,而是索引所扫描的结果数。

u  范例 select * from user where area=’厦门’ and sex=’女’

l  假设 索引为 area

l  假设User表中 area=’厦门’的有 125000条,而搜索返回结果为60233条。

l  影响结果集是125000条,索引先命中125000条厦门用户,再遍历以sex=’女’进行筛选操作,得到60233条结果。

l  如果该SQL 增加 limit 0,30的后缀。查询时,先命中 area=’厦门’,然后依顺序执行 sex=’女’ 筛选操作,直到满足可以返回30条为止,所涉及记录数未知。除非满足条件的结果不足30条,否则不会遍历125000条记录。

l  但是如果SQL中涉及了排序操作,比如 order by lastlogin desc 再有limit 0,30时,排序需要遍历所有area=’厦门’ 的记录,而不是满足即止。

n  影响结果集越趋近于实际输出或操作的目标结果集,索引效率越高。

n  影响结果集与查询开销的关系可以理解为线性相关。减少一半影响结果集,即可提升一倍查询效率!当一条搜索query可以符合多个索引时,选择影响结果集最少的索引。

n  SQL的优化,核心就是对结果集的优化,认识索引是增强对结果集的判断,基于索引的认识,可以在编写SQL的时候,对该SQL可能的影响结果集有预判,并做出适当的优化和调整。

n  Limit 的影响,需要斟酌对待

u  如果索引与查询条件和排序条件完全命中,影响结果集就是limit后面的数字($start + $end),比如 limit 200,30 影响结果集是230. 而不是30.

u  如果索引只命中部分查询条件,甚至无命中条件,在无排序条件情况下,会在索引命中的结果集 中遍历到满足所有其他条件为止。比如 select * from user limit 10; 虽然没用到索引,但是因为不涉及二次筛选和排序,系统直接返回前10条结果,影响结果集依然只有10条,就不存在效率影响。

u  如果搜索所包含的排序条件没有被索引命中,则系统会遍历是所有索引所命中的结果,并且排序。例如 Select * from user order by timeline desc limit 10; 如果timeline不是索引,影响结果集是全表,就存在需要全表数据排序,这个效率影响就巨大。再比如 Select * from user where area=’厦门’ order by timeline desc limit 10; 如果area是索引,而area+timeline未建立索引,则影响结果集是所有命中 area=’厦门’的用户,然后在影响结果集内排序。

 

常见案例及优化思路

n  毫秒级优化案例

u  某游戏用户进入后显示最新动态,SQL为 select * from userfeed where uid=$uid order by timeline desc limit 20; 主键为$uid 。 该SQL每天执行数百万次之多,高峰时数据库负载较高。 通过 show processlist 显示大量进程处于Sending data状态。没有慢查询记录。 仔细分析发现,因存在较多高频用户访问,命中 uid=$uid的影响结果集通常在几百到几千,在上千条影响结果集情况下,该SQL查询开销通常在0.01秒左右。 建立uid+timeline 复合索引,将排序引入到索引结构中,影响结果集就只有limit 后面的数字,该SQL查询开销锐减至0.001秒,数据库负载骤降。

n  Innodb锁表案例

u  某游戏数据库使用了innodb,innodb是行级锁,理论上很少存在锁表情况。出现了一个SQL语句(delete from tabname where xid=…),这个SQL非常用SQL,仅在特定情况下出现,每天出现频繁度不高(一天仅10次左右),数据表容量百万级,但是这个xid未建立索引,于是悲惨的事情发生了,当执行这条delete 的时候,真正删除的记录非常少,也许一到两条,也许一条都没有;但是!由于这个xid未建立索引,delete操作时遍历全表记录,全表被delete操作锁定,select操作全部被locked,由于百万条记录遍历时间较长,期间大量select被阻塞,数据库连接过多崩溃。

这种非高发请求,操作目标很少的SQL,因未使用索引,连带导致整个数据库的查询阻塞,需要极大提高警觉。

n  实时排名策略优化

u  背景: 用户提交游戏积分,显示实时排名。

u  原方案:

l  提交积分是插入记录,略,

l  select count(*) from jifen where gameid=$gameid and fenshu>$fenshu

u  问题与挑战

l  即便索引是 gameid+fenshu 复合索引,涉及count操作,当分数较低时,影响结果集巨大,查询效率缓慢,高峰期会导致连接过多。

u  优化思路

l  减少影响结果集,又要取得实时数据,单纯从SQL上考虑,不太有方法。

l  将游戏积分预定义分成数个积分断点,然后分成积分区间,原始状态,每个区间设置一个统计数字项,初始为0。

l  每次积分提交时,先确定该分数属于哪两个区间之间,这个操作非常简单,因为区间是预定义的,而且数量很少,只需遍历即可,找到最该分数符合的区间, 该区间的统计数字项(独立字段,可用内存处理,异步回写数据库或文件)+1。 记录该区间上边界数字为$duandian。

l  SQL:  select count(*) from jifen where gameid=$gameid and fenshu>$fenshu and fenshu<$duandian,如果处于第一区间,则无需$duandian,这样因为第一区间本身也是最好的成绩,影响结果集不会很多。 通过该SQL获得其在该区间的名次。

l  获取前面区间的总数总和。(该数字是直接从上述提到的区间统计数字获取,不需要进行count操作)将区间内名次+前区间的统计数字和,获得总名次。

l  该方法关键在于,积分区间需要合理定义,保证积分提交成绩能平均散落在不同区间。

l  如涉及较多其他条件,如日排行,总排行,以及其他独立用户去重等,请按照影响结果集思路自行发挥。

u  Redis方案

l  Redis数据结构包括String,list,dict和Zset四种,在本案例中是非常好的替代数据库的方案,本文档只做简介,不做额外扩展。

l  String 哈希索引,key-value结构,主键查询效率极高,不支持排序,比较查询。

l  List 队列结构,在数据异步写入处理中可以替代memcache。

l  Dict 数组结构,存储结构化,序列化内容,可以针对数组中的特定列进行操作。

l  Zset 有序数组结构,分两个子结构,第一是多层树形的存储结构,第二是每个树形节点的计数器,这样类似于前面的分段方式,可以理解为多层分段方式,所以查询效率更高,缺点是更新效率有所增加。

n  论坛翻页优化

u  背景,常见论坛帖子页 SQL: select * from post where tagid=$tagid order by lastpost limit $start, $end 翻页 。索引为 tagid+lastpost 复合索引

u  挑战, 超级热帖,几万回帖,用户频频翻到末页,limit 25770,30 一个操作下来,影响结果集巨大(25770+30),查询缓慢。

u  解决方法:

l  只涉及上下翻页情况

n  每次查询的时候将该页查询结果中最大的 $lastpost和最小的分别记录为 $minlastpost 和 $maxlastpost ,上翻页查询为 select * from post where tagid=$tagid and lastpost<$minlastpost order by lastpost desc limit 30; 下翻页为 select * from post where tagid=$tagid and lastpost>$maxlastpost order by lastpost limit 30; 使用这种方式,影响结果集只有30条,效率极大提升。

l  涉及跳转到任意页

n  互联网上常见的一个优化方案可以这样表述,select * from post where tagid=$tagid and lastpost>=(select lastpost from post where tagid=$tagid order by lastpost limit $start,1) order by lastpost limit 30; 或者 select * from post where pid in (select pid from post where tagid=$tagid order by lastpost limit $start,30); (第2条S语法在新的mysql版本已经不支持,新版本mysql in的子语句不再支持limit条件,但可以分解为两条SQL实现,原理不变,不做赘述)

n  以上思路在于,子查询的影响结果集仍然是$start +30,但是数据获取的过程(Sending data状态)发生在索引文件中,而不是数据表文件,这样所需要的系统开销就比前一种普通的查询低一个数量级,而主查询的影响结果集只有30条,几乎无开销。但是切记,这里仍然涉及了太多的影响结果集操作。

u  延伸问题:

l  来自于uchome典型查询 SELECT * FROM uchome_thread WHERE tagid=’73820′  ORDER BY displayorder DESC, lastpost DESC LIMIT $start,30;

l  如果换用 如上方法,上翻页代码 SELECT * FROM uchome_thread WHERE tagid=’73820′  and lastpost<$minlastpost ORDER BY displayorder DESC,lastpost DESC LIMIT 0,30; 下翻页代码SELECT * FROM uchome_thread WHERE tagid=’73820′  and lastpost>$maxlastpost ORDER BY displayorder DESC, lastpost ASC LIMIT 0,30;

l  这里涉及一个order by 索引可用性问题,当order by中 复合索引的字段,一个是ASC,一个是DESC 时,其排序无法在索引中完成。 所以只有上翻页可以正确使用索引,影响结果集为30。下翻页无法在排序中正确使用索引,会命中所有索引内容然后排序,效率低下。

l  总结:

n  基于影响结果集的理解去优化,不论从数据结构,代码,还是涉及产品策略上,都需要贯彻下去。

n  涉及 limit $start,$num的搜索,如果$start巨大,则影响结果集巨大,搜索效率会非常难过低,尽量用其他方式改写为 limit 0,$num; 确系无法改写的情况下,先从索引结构中获得 limit $start,$num 或limit $start,1 ;再用in操作或基于索引序的 limit 0,$num 二次搜索。

n  请注意,我这里永远不会讲关于外键和join的优化,因为在我们的体系里,这是根本不允许的! 架构优化部分会解释为什么。

理解执行状态

常见关注重点

l  慢查询日志,关注重点如下

n  是否锁定,及锁定时间

u  如存在锁定,则该慢查询通常是因锁定因素导致,本身无需优化,需解决锁定问题。

n  影响结果集

u  如影响结果集较大,显然是索引项命中存在问题,需要认真对待。

l  Explain 操作

n  索引项使用

u  不建议用using index做强制索引,如未如预期使用索引,建议重新斟酌表结构和索引设置。

n  影响结果集

u  这里显示的数字不一定准确,结合之前提到对数据索引的理解来看,还记得嘛?就把索引当作有序序列来理解,反思SQL。

l  Set profiling , show profiles for query操作

n  执行开销

u  注意,有问题的SQL如果重复执行,可能在缓存里,这时要注意避免缓存影响。通过这里可以看到。

u  执行时间超过0.005秒的频繁操作SQL建议都分析一下。

u  深入理解数据库执行的过程和开销的分布

l  Show processlist 执行状态监控

n  这是在数据库负载波动时经常进行的一项操作

n  具体参见如下

执行状态分析

l  Sleep 状态

n  通常代表资源未释放,如果是通过连接池,sleep状态应该恒定在一定数量范围内

n  实战范例: 因前端数据输出时(特别是输出到用户终端)未及时关闭数据库连接,导致因网络连接速度产生大量sleep连接,在网速出现异常时,数据库 too many connections 挂死。

n  简单解读,数据查询和执行通常只需要不到0.01秒,而网络输出通常需要1秒左右甚至更长,原本数据连接在0.01秒即可释放,但是因为前端程序未执行close操作,直接输出结果,那么在结果未展现在用户桌面前,该数据库连接一直维持在sleep状态!

l  Waiting for net, reading from net, writing to net

n  偶尔出现无妨

n  如大量出现,迅速检查数据库到前端的网络连接状态和流量

n  案例: 因外挂程序,内网数据库大量读取,内网使用的百兆交换迅速爆满,导致大量连接阻塞在waiting for net,数据库连接过多崩溃

l  Locked状态

n  有更新操作锁定

n  通常使用innodb可以很好的减少locked状态的产生,但是切记,更新操作要正确使用索引,即便是低频次更新操作也不能疏忽。如上影响结果集范例所示。

n  在myisam的时代,locked是很多高并发应用的噩梦。所以mysql官方也开始倾向于推荐innodb。

l  Copy to tmp table

n  索引及现有结构无法涵盖查询条件,才会建立一个临时表来满足查询要求,产生巨大的恐怖的i/o压力。

n  很可怕的搜索语句会导致这样的情况,如果是数据分析,或者半夜的周期数据清理任务,偶尔出现,可以允许。频繁出现务必优化之。

n  Copy to tmp table 通常与连表查询有关,建议逐渐习惯不使用连表查询。

n  实战范例:

u  某社区数据库阻塞,求救,经查,其服务器存在多个数据库应用和网站,其中一个不常用的小网站数据库产生了一个恐怖的copy to tmp table 操作,导致整个硬盘i/o和cpu压力超载。Kill掉该操作一切恢复。

l  Sending data

n  Sending data 并不是发送数据,别被这个名字所欺骗,这是从物理磁盘获取数据的进程,如果你的影响结果集较多,那么就需要从不同的磁盘碎片去抽取数据,

n  偶尔出现该状态连接无碍。

n  回到上面影响结果集的问题,一般而言,如果sending data连接过多,通常是某查询的影响结果集过大,也就是查询的索引项不够优化。

n  前文提到影响结果集对SQL查询效率线性相关,主要就是针对这个状态的系统开销。

n  如果出现大量相似的SQL语句出现在show proesslist列表中,并且都处于sending data状态,优化查询索引,记住用影响结果集的思路去思考。

l  Storing result to query cache

n  出现这种状态,如果频繁出现,使用set profiling分析,如果存在资源开销在SQL整体开销的比例过大(即便是非常小的开销,看比例),则说明query cache碎片较多

n  使用flush query cache 可即时清理,也可以做成定时任务

n  Query cache参数可适当酌情设置。

l  Freeing items

n  理论上这玩意不会出现很多。偶尔出现无碍

n  如果大量出现,内存,硬盘可能已经出现问题。比如硬盘满或损坏。

n  i/o压力过大时,也可能出现Free items执行时间较长的情况。

l  Sorting for …

n  和Sending data类似,结果集过大,排序条件没有索引化,需要在内存里排序,甚至需要创建临时结构排序。

l  其他

n  还有很多状态,遇到了,去查查资料。基本上我们遇到其他状态的阻塞较少,所以不关心。

分析流程

l  基本流程

n  详细了解问题状况

u  Too many connections 是常见表象,有很多种原因。

u  索引损坏的情况在innodb情况下很少出现。

u  如出现其他情况应追溯日志和错误信息。

n  了解基本负载状况和运营状况

u  基本运营状况

l  当前每秒读请求

l  当前每秒写请求

l  当前在线用户

l  当前数据容量

u  基本负载情况

l  学会使用这些指令

n  Top

n  Vmstat

n  uptime

n  iostat

n  df

l  Cpu负载构成

n  特别关注i/o压力( wa%)

n  多核负载分配

l  内存占用

n  Swap分区是否被侵占

n  如Swap分区被侵占,物理内存是否较多空闲

l  磁盘状态

n  硬盘满和inode节点满的情况要迅速定位和迅速处理

n  了解具体连接状况

u  当前连接数

l  Netstat –an|grep 3306|wc –l

l  Show processlist

u  当前连接分布 show processlist

l  前端应用请求数据库不要使用root帐号!

n  Root帐号比其他普通帐号多一个连接数许可。

n  前端使用普通帐号,在too many connections的时候root帐号仍可以登录数据库查询 show processlist!

n  记住,前端应用程序不要设置一个不叫root的root帐号来糊弄!非root账户是骨子里的,而不是名义上的。

l  状态分布

n  不同状态代表不同的问题,有不同的优化目标。

n  参见如上范例。

l  雷同SQL的分布

n  是否较多雷同SQL出现在同一状态

u  当前是否有较多慢查询日志

l  是否锁定

l  影响结果集

n  频繁度分析

u  写频繁度

l  如果i/o压力高,优先分析写入频繁度

l  Mysqlbinlog 输出最新binlog文件,编写脚本拆分

l  最多写入的数据表是哪个

l  最多写入的数据SQL是什么

l  是否存在基于同一主键的数据内容高频重复写入?

n  涉及架构优化部分,参见架构优化-缓存异步更新

u  读取频繁度

l  如果cpu资源较高,而i/o压力不高,优先分析读取频繁度

l  程序中在封装的db类增加抽样日志即可,抽样比例酌情考虑,以不显著影响系统负载压力为底线。

l  最多读取的数据表是哪个

l  最多读取的数据SQL是什么

n  该SQL进行explain 和set profiling判定

n  注意判定时需要避免query cache影响

u  比如,在这个SQL末尾增加一个条件子句 and 1=1 就可以避免从query cache中获取数据,而得到真实的执行状态分析。

l  是否存在同一个查询短期内频繁出现的情况

n  涉及前端缓存优化

n  抓大放小,解决显著问题

u  不苛求解决所有优化问题,但是应以保证线上服务稳定可靠为目标。

u  解决与评估要同时进行,新的策略或解决方案务必经过评估后上线。

常见案例解析

l  现象:服务器出现too many connections 阻塞

n  入手点:

u  查看服务器状态,cpu占用,内存占用,硬盘占用,硬盘i/o压力

u  查看网络流量状态,mysql与应用服务器的输入输出状况

u  通过Show processlist查看当前运行清单

l  注意事项,日常应用程序连接数据库不要使用root账户,保证故障时可以通过root 进入数据库查看 show processlist。

n  状态分析:

u  参见如上执行状态清单,根据连接状态的分布去确定原因。

n  紧急恢复

u  在确定故障原因后,应通过kill掉阻塞进程的方式 立即恢复数据库。

n  善后处理

u  以下针对常见问题简单解读

u  Sleep 连接过多导致,应用端及时释放连接,排查关联因素。

u  Locked连接过多,如源于myisam表级锁,更innodb引擎;如源于更新操作使用了不恰当的索引或未使用索引,改写更新操作SQL或建立恰当索引。

u  Sending data连接过多,用影响结果集的思路优化SQL查询,优化表索引结构。

u  Free items连接过多,i/o压力过大 或硬盘故障

u  Waiting for net , writing to net 连接过多, mysql与应用服务器连接阻塞。

u  其他仍参见如上执行状态清单所示分析。

u  如涉及不十分严格安全要求的数据内容,可用定期脚本跟踪请求进程,并kill掉僵死进程。如数据安全要求较严格,则不能如此进行。

l  现象:数据库负载过高,响应缓慢。

n  入手点:

u  查看cpu状态,服务器负载构成

n  分支1:i/o占用过高。

u  步骤1: 检查内存是否占用swap分区,排除因内存不足导致的i/o开销。

u  步骤2:通过iostat 指令分析i/o是否集中于数据库硬盘,是否是写入度较高。

u  步骤3:如果压力来自于写,使用mysqlbinlog 解开最新的binlog文件。

u  步骤4:编写日志分析脚本或grep指令,分析每秒写入频度和写入内容。

l  写入频度不高,则说明i/o压力另有原因或数据库配置不合理。

u  步骤5:编写日志分析脚本或grep 指令,分析写入的数据表构成,和写入的目标构成。

u  步骤6:编写日志分析脚本,分析是否存在同一主键的重复写入。 比如出现大量 update post set views=views+1 where tagid=****的操作,假设在一段时间内出现了2万次,而其中不同的tagid有1万次,那么就是有50%的请求是重复update请求,有可以通过异步更新合并的空间。

u  提示一下,以上所提及的日志分析脚本编写,正常情况下不应超过1个小时,而对系统负载分析所提供的数据支持价值是巨大的,对性能优化方案的选择是非常有意义的,如果您认为这项工作是繁冗而且复杂的工作,那么一定是在分析思路和目标把握上出现了偏差。

n  分支2:i/o占用不高,CPU 占用过高

u  步骤1:查看慢查询日志

u  步骤2:不断刷新查看Show processlist清单,并把握可能频繁出现的处于Sending data状态的SQL。

u  步骤3:记录前端执行SQL

l  于前端应用程序执行查询的封装对象内,设置随机采样,记录前端执行的SQL,保证有一定的样本规模,并且不会带来前端i/o负载的激增。

l  基于采样率和记录频率,获得每秒读请求次数数据指标。

l  编写日志分析脚本,分析采样的SQL构成,所操作的数据表,所操作的主键。

l  对频繁重复读取的SQL(完全一致的SQL)进行判定,是否数据存在频繁变动,是否需要实时展现最新数据,如有可能,缓存化,并预估缓存命中率。

l  对频繁读取但不重复的(SQL结构一致,但条件中的数据不一致)SQL进行判定,是否索引足够优化,影响结果集与输出结果是否足够接近。

u  步骤4:将导致慢查询的SQL或频繁出现于show processlist状态的SQL,或采样记录的频繁度SQL进行分析,按照影响结果集的思路和索引理解来优化。

u  步骤5:对如上难以界定问题的SQL进行 set profiling 分析。

u  步骤6:优化后分析继续采样跟踪分析。并跟踪比对结果。

n  善后处理

u  日常跟踪脚本,不断记录一些状态信息。保证每个时间节点都能回溯。

u  确保随时能了解服务器的请求频次,读写请求的分布。

u  记录一些未造成致命影响的隐患点,可暂不解决,但需要记录。

u  如确系服务器请求频次过高,可基于负载分布决定硬件扩容方案,比如i/o压力过高可考虑固态硬盘;内存占用swap可考虑增加内容容量等。用尽可能少的投入实现最好的负载支撑能力,而不是简单的买更多服务器。

总结

l  要学会怎样分析问题,而不是单纯拍脑袋优化

l  慢查询只是最基础的东西,要学会优化0.01秒的查询请求。

l  当发生连接阻塞时,不同状态的阻塞有不同的原因,要找到原因,如果不对症下药,就会南辕北辙

n  范例:如果本身系统内存已经超载,已经使用到了swap,而还在考虑加大缓存来优化查询,那就是自寻死路了。

l  影响结果集是非常重要的中间数据和优化指标,学会理解这一概念,理论上影响结果集与查询效率呈现非常紧密的线性相关。

l  监测与跟踪要经常做,而不是出问题才做

n  读取频繁度抽样监测

u  全监测不要搞,i/o吓死人。

u  按照一个抽样比例抽样即可。

u  针对抽样中发现的问题,可以按照特定SQL在特定时间内监测一段全查询记录,但仍要考虑i/o影响。

n  写入频繁度监测

u  基于binlog解开即可,可定时或不定时分析。

n  微慢查询抽样监测

u  高并发情况下,查询请求时间超过0.01秒甚至0.005秒的,建议酌情抽样记录。

n  连接数预警监测

u  连接数超过特定阈值的情况下,虽然数据库没有崩溃,建议记录相关连接状态。

l  学会通过数据和监控发现问题,分析问题,而后解决问题顺理成章。特别是要学会在日常监控中发现隐患,而不是问题爆发了才去处理和解决。


Mysql 运维优化

存储引擎类型

l  Myisam 速度快,响应快。表级锁是致命问题。

l  Innodb 目前主流存储引擎

n  行级锁

u  务必注意影响结果集的定义是什么

u  行级锁会带来更新的额外开销,但是通常情况下是值得的。

n  事务提交

u  对i/o效率提升的考虑

u  对安全性的考虑

l  HEAP 内存引擎

n  频繁更新和海量读取情况下仍会存在锁定状况

内存使用考量

l  理论上,内存越大,越多数据读取发生在内存,效率越高

l  Query cache的使用

n  如果前端请求重复度不高,或者应用层已经充分缓存重复请求,query cache不必设置很大,甚至可以不设置。

n  如果前端请求重复度较高,无应用层缓存,query cache是一个很好的偷懒选择

u  对于中等以下规模数据库应用,偷懒不是一个坏选择。

u  如果确认使用query cache,记得定时清理碎片,flush query cache.

l  要考虑到现实的硬件资源和瓶颈分布

l  学会理解热点数据,并将热点数据尽可能内存化

n  所谓热点数据,就是最多被访问的数据。

n  通常数据库访问是不平均的,少数数据被频繁读写,而更多数据鲜有读写。

n  学会制定不同的热点数据规则,并测算指标。

u  热点数据规模,理论上,热点数据越少越好,这样可以更好的满足业务的增长趋势。

u  响应满足度,对响应的满足率越高越好。

u  比如依据最后更新时间,总访问量,回访次数等指标定义热点数据,并测算不同定义模式下的热点数据规模

性能与安全性考量

l  数据提交方式

n  innodb_flush_log_at_trx_commit = 1 每次自动提交,安全性高,i/o压力大

n  innodb_flush_log_at_trx_commit = 2 每秒自动提交,安全性略有影响,i/o承载强。

l  日志同步

n  Sync-binlog    =1 每条自动更新,安全性高,i/o压力大

n  Sync-binlog = 0 根据缓存设置情况自动更新,存在丢失数据和同步延迟风险,i/o承载力强。

n  个人建议保存binlog日志文件,便于追溯 更新操作和系统恢复。

n  如对日志文件的i/o压力有担心,在内存宽裕的情况下,可考虑将binlog 写入到诸如 /dev/shm 这样的内存映射分区,并定时将旧有的binlog转移到物理硬盘。

l  性能与安全本身存在相悖的情况,需要在业务诉求层面决定取舍

n  学会区分什么场合侧重性能,什么场合侧重安全

n  学会将不同安全等级的数据库用不同策略管理

存储/写入压力优化

l  顺序读写性能远高于随机读写

l  将顺序写数据和随机读写数据分成不同的物理磁盘进行,有助于i/o压力的疏解

l  部分安全要求不高的写入操作可以用 /dev/shm 分区存储,简单变成内存写。

l  多块物理硬盘做raid10,可以提升写入能力

l  关键存储设备优化,善于比对不同存储介质的压力测试数据。

l  涉及必须存储较为庞大的数据量时

运维监控体系

l  系统监控

n  服务器资源监控

u  Cpu, 内存,硬盘空间,i/o压力

u  设置阈值报警

n  服务器流量监控

u  外网流量,内网流量

u  设置阈值报警

n  连接状态监控

u  Show processlist 设置阈值,每分钟监测,超过阈值记录

l  应用监控

n  慢查询监控

u  慢查询日志

u  如果存在多台数据库服务器,应有汇总查阅机制。

n  请求错误监控

u  高频繁应用中,会出现偶发性数据库连接错误或执行错误,将错误信息记录到日志,查看每日的比例变化。

u  偶发性错误,如果数量极少,可以不用处理,但是需时常监控其趋势。

u  会存在恶意输入内容,输入边界限定缺乏导致执行出错,需基于此防止恶意入侵探测行为。

n  微慢查询监控

u  高并发环境里,超过0.01秒的查询请求都应该关注一下。

n  频繁度监控

u  写操作,基于binlog,定期分析。

u  读操作,在前端db封装代码中增加抽样日志,并输出执行时间。

u  分析请求频繁度是开发架构 进一步优化的基础

u  最好的优化就是减少请求次数!

l  总结:

n  监控与数据分析是一切优化的基础。

n  没有运营数据监测就不要妄谈优化!

n  监控要注意不要产生太多额外的负载,不要因监控带来太多额外系统开销


Mysql 架构优化

架构优化目标

防止单点隐患

l  所谓单点隐患,就是某台设备出现故障,会导致整体系统的不可用,这个设备就是单点隐患。

l  理解连带效应,所谓连带效应,就是一种问题会引发另一种故障,举例而言,memcache+mysql是一种常见缓存组合,在前端压力很大时,如果memcache崩溃,理论上数据会通过mysql读取,不存在系统不可用情况,但是mysql无法对抗如此大的压力冲击,会因此连带崩溃。因A系统问题导致B系统崩溃的连带问题,在运维过程中会频繁出现。

n  实战范例: 在mysql连接不及时释放的应用环境里,当网络环境异常(同机房友邻服务器遭受拒绝服务攻击,出口阻塞),网络延迟加剧,空连接数急剧增加,导致数据库连接过多崩溃。

n  实战范例2:前端代码 通常我们封装 mysql_connect和memcache_connect,二者的顺序不同,会产生不同的连带效应。如果mysql_connect在前,那么一旦memcache连接阻塞,会连带mysql空连接过多崩溃。

n  连带效应是常见的系统崩溃,日常分析崩溃原因的时候需要认真考虑连带效应的影响,头疼医头,脚疼医脚是不行的。

方便系统扩容

l  数据容量增加后,要考虑能够将数据分布到不同的服务器上。

l  请求压力增加时,要考虑将请求压力分布到不同服务器上。

l  扩容设计时需要考虑防止单点隐患。

安全可控,成本可控

l  数据安全,业务安全

l  人力资源成本>带宽流量成本>硬件成本

n  成本与流量的关系曲线应低于线性增长(流量为横轴,成本为纵轴)。

n  规模优势

l  本教程仅就与数据库有关部分讨论,与数据库无关部门请自行参阅其他学习资料。

分布式方案

分库&拆表方案

l  基本认识

n  用分库&拆表是解决数据库容量问题的唯一途径。

n  分库&拆表也是解决性能压力的最优选择。

n  分库 – 不同的数据表放到不同的数据库服务器中(也可能是虚拟服务器)

n  拆表 – 一张数据表拆成多张数据表,可能位于同一台服务器,也可能位于多台服务器(含虚拟服务器)。

l  去关联化原则

n  摘除数据表之间的关联,是分库的基础工作。

n  摘除关联的目的是,当数据表分布到不同服务器时,查询请求容易分发和处理。

n  学会理解反范式数据结构设计,所谓反范式,第一要点是不用外键,不允许Join操作,不允许任何需要跨越两个表的查询请求。第二要点是适度冗余减少查询请求,比如说,信息表,fromuid, touid, message字段外,还需要一个fromuname字段记录用户名,这样查询者通过touid查询后,能够立即得到发信人的用户名,而无需进行另一个数据表的查询。

n  去关联化处理会带来额外的考虑,比如说,某一个数据表内容的修改,对另一个数据表的影响。这一点需要在程序或其他途径去考虑。

l  分库方案

n  安全性拆分

u  将高安全性数据与低安全性数据分库,这样的好处第一是便于维护,第二是高安全性数据的数据库参数配置可以以安全优先,而低安全性数据的参数配置以性能优先。参见运维优化相关部分。

n  基于业务逻辑拆分

u  根据数据表的内容构成,业务逻辑拆分,便于日常维护和前端调用。

u  基于业务逻辑拆分,可以减少前端应用请求发送到不同数据库服务器的频次,从而减少链接开销。

u  基于业务逻辑拆分,可保留部分数据关联,前端web工程师可在限度范围内执行关联查询。

n  基于负载压力拆分

u  基于负载压力对数据结构拆分,便于直接将负载分担给不同的服务器。

u  基于负载压力拆分,可能拆分后的数据库包含不同业务类型的数据表,日常维护会有一定的烦恼。

n  混合拆分组合

u  基于安全与业务拆分为数据库实例,但是可以使用不同端口放在同一个服务器上。

u  基于负载可以拆分为更多数据库实例分布在不同数据库上

u  例如,

l  基于安全拆分出A数据库实例,

l  基于业务拆分出B,C数据库实例,

l  C数据库存在较高负载,基于负载拆分为C1,C2,C3,C4等 实例。

l  数据库服务器完全可以做到 A+B+C1 为一台,C2,C3,C4各单独一台。

 

l  分表方案

n  数据量过大或者访问压力过大的数据表需要切分

n  纵向分表(常见为忙闲分表)

u  单数据表字段过多,可将频繁更新的整数数据与非频繁更新的字符串数据切分

u  范例 user表 ,个人简介,地址,QQ号,联系方式,头像 这些字段为字符串类型,更新请求少; 最后登录时间,在线时常,访问次数,信件数这些字段为整数型字段,更新频繁,可以将后面这些更新频繁的字段独立拆出一张数据表,表内容变少,索引结构变少,读写请求变快。

n  横向切表

u  等分切表,如哈希切表或其他基于对某数字取余的切表。等分切表的优点是负载很方便的分布到不同服务器;缺点是当容量继续增加时无法方便的扩容,需要重新进行数据的切分或转表。而且一些关键主键不易处理。

u  递增切表,比如每1kw用户开一个新表,优点是可以适应数据的自增趋势;缺点是往往新数据负载高,压力分配不平均。

u  日期切表,适用于日志记录式数据,优缺点等同于递增切表。

u  个人倾向于递增切表,具体根据应用场景决定。

n  热点数据分表

u  将数据量较大的数据表中将读写频繁的数据抽取出来,形成热点数据表。通常一个庞大数据表经常被读写的内容往往具有一定的集中性,如果这些集中数据单独处理,就会极大减少整体系统的负载。

u  热点数据表与旧有数据关系

l  可以是一张冗余表,即该表数据丢失不会妨碍使用,因源数据仍存在于旧有结构中。优点是安全性高,维护方便,缺点是写压力不能分担,仍需要同步写回原系统。

l  可以是非冗余表,即热点数据的内容原有结构不再保存,优点是读写效率全部优化;缺点是当热点数据发生变化时,维护量较大。

l  具体方案选择需要根据读写比例决定,在读频率远高于写频率情况下,优先考虑冗余表方案。

u  热点数据表可以用单独的优化的硬件存储,比如昂贵的闪存卡或大内存系统。

u  热点数据表的重要指标

l  热点数据的定义需要根据业务模式自行制定策略,常见策略为,按照最新的操作时间;按照内容丰富度等等。

l  数据规模,比如从1000万条数据,抽取出100万条热点数据。

l  热点命中率,比如查询10次,多少次命中在热点数据内。

l  理论上,数据规模越小,热点命中率越高,说明效果越好。需要根据业务自行评估。

u  热点数据表的动态维护

l  加载热点数据方案选择

n  定时从旧有数据结构中按照新的策略获取

n  在从旧有数据结构读取时动态加载到热点数据

l  剔除热点数据方案选择

n  基于特定策略,定时将热点数据中访问频次较少的数据剔除

n  如热点数据是冗余表,则直接删除即可,如不是冗余表,需要回写给旧有数据结构。

u  通常,热点数据往往是基于缓存或者key-value 方案冗余存储,所以这里提到的热点数据表,其实更多是理解思路,用到的场合可能并不多….

反范式设计(冗余结构设计)

l  反范式设计的概念

n  无外键,无连表查询。

n  便于分布式设计,允许适度冗余,为了容量扩展允许适度开销。

n  基于业务自由优化,基于i/o 或查询设计,无须遵循范式结构设计。

l  冗余结构设计所面临的典型场景

n  原有展现程序涉及多个表的查询,希望精简查询程序

n  数据表拆分往往基于主键,而原有数据表往往存在非基于主键的关键查询,无法在分表结构中完成。

n  存在较多数据统计需求(count, sum等),效率低下。

l  冗余设计方案

n  基于展现的冗余设计

u  为了简化展现程序,在一些数据表中往往存在冗余字段

u  举例,信息表  message,存在字段 fromuid,touid,msg,sendtime  四个字段,其中 touid+sendtime是复合索引。存在查询为 select * from message where touid=$uid order by sendtime desc  limit 0,30;

u  展示程序需要显示发送者姓名,此时通常会在message表中增加字段fromusername,甚至有的会增加fromusersex,从而无需连表查询直接输出信息的发送者姓名和性别。这就是一种简单的,为了避免连表查询而使用的冗余字段设计。

n  基于查询的冗余设计

u  涉及分表操作后,一些常见的索引查询可能需要跨表,带来不必要的麻烦。确认查询请求远大于写入请求时,应设置便于查询项的冗余表。

u  冗余表要点

l  数据一致性,简单说,同增,同删,同更新。

l  可以做全冗余,或者只做主键关联的冗余,比如通过用户名查询uid,再基于uid查询源表。

u  实战范例1

l  用户分表,将用户库分成若干数据表

l  基于用户名的查询和基于uid的查询都是高并发请求。

l  用户分表基于uid分成数据表,同时基于用户名做对应冗余表。

l  如果允许多方式登陆,可以有如下设计方法

n  uid,passwd,用户信息等等,主数据表,基于uid 分表

n  ukey,ukeytype,uid 基于ukey分表,便于用户登陆的查询。分解成如下两个SQL。

u  select uid from ulist_key_13 where ukey=’$username’ and ukeytype=‘login’;

u  select * from ulist_uid_23 where uid=$uid and passwd=’$passwd’;

n  ukeytype定义用户的登陆依据,比如用户名,手机号,邮件地址,网站昵称等。 Ukey+ukeytype 必须唯一。

n  此种方式需要登陆密码统一,对于第三方connect接入模式,可以通过引申额外字段完成。

u  实战范例2:用户游戏积分排名

l  表结构 uid,gameid,score 参见前文实时积分排行。表内容巨大,需要拆表。

l  需求1:基于游戏id查询积分排行

l  需求2:基于用户id查询游戏积分记录

l  解决方案:建立完全相同的两套表结构,其一以uid为拆表主键,其二以gameid为拆表主键,用户提交积分时,向两个数据结构同时提交。

u  实战范例3:全冗余查询结构

l  主信息表仅包括 主键及备注memo 字段(text类型),只支持主键查询,可以基于主键拆表。所以需要展现和存储的内容均在memo字段重体现。

l  对每一个查询条件,建立查询冗余表,以查询条件字段为主键,以主信息表主键id 为内容。

l  日常查询只基于查询冗余表,然后通过in的方式从主信息表获得内容。

l  优点是结构扩展非常方便,只需要扩展新的查询信息表即可,核心思路是,只有查询才需要独立的索引结构,展现无需独立字段。

l  缺点是只适合于相对固定的查询架构,对于更加灵活的组合查询束手无策。

n  基于统计的冗余结构

u  为了减少会涉及大规模影响结果集的表数据操作,比如count,sum操作。应将一些统计类数据通过冗余数据结构保存。

u  冗余数据结构可能以字段方式存在,也可能以独立数据表结构存在,但是都应能通过源数据表恢复。

u  实战范例:

l  论坛板块的发帖量,回帖量,每日新增数据等。

l  网站每日新增用户数等。

l  参见Discuz论坛系统数据结构,有较多相关结构。

l  参见前文分段积分结构,是典型用于统计的冗余结构。

l  后台可以通过源数据表更新该数字。

l  Redis的Zset类型可以理解为存在一种冗余统计结构。

n  历史数据表

u  历史数据表对应于热点数据表,将需求较少又不能丢弃的数据存入,仅在少数情况下被访问。

主从架构

l  基本认识

n  读写分离对负载的减轻远远不如分库分表来的直接。

n  写压力会传递给从表,只读从库一样有写压力,一样会产生读写锁!

n  一主多从结构下,主库是单点隐患,很难解决(如主库当机,从库可以响应读写,但是无法自动担当主库的分发功能)

n  主从延迟也是重大问题。一旦有较大写入问题,如表结构更新,主从会产生巨大延迟。

l  应用场景

n  在线热备

n  异地分布

u  写分布,读统一。

u  仍然困难重重,受限于网络环境问题巨多!

n  自动障碍转移

u  主崩溃,从自动接管

n  个人建议,负载均衡主要使用分库方案,主从主要用于热备和障碍转移。

l  潜在优化点

n  为了减少写压力,有些人建议主不建索引提升i/o性能,从建立索引满足查询要求。个人认为这样维护较为麻烦。而且从本身会继承主的i/o压力,因此优化价值有限。该思路特此分享,不做推荐。

故障转移处理

l  要点

n  程序与数据库的连接,基于虚地址而非真实ip,由负载均衡系统监控。

n  保持主从结构的简单化,否则很难做到故障点摘除。

l  思考方式

n  遍历对服务器集群的任何一台服务器,前端web,中间件,监控,缓存,db等等,假设该服务器出现故障,系统是否会出现异常?用户访问是否会出现异常。

n  目标:任意一台服务器崩溃,负载和数据操作均会很短时间内自动转移到其他服务器,不会影响业务的正常进行。不会造成恶性的数据丢失。(哪些是可以丢失的,哪些是不能丢失的)

缓存方案

缓存结合数据库的读取

l  Memcached是最常用的缓存系统

l  Mysql 最新版本已经开始支持memcache插件,但据牛人分析,尚不成熟,暂不推荐。

l  数据读取

n  并不是所有数据都适合被缓存,也并不是进入了缓存就意味着效率提升。

n  命中率是第一要评估的数据。

n  如何评估进入缓存的数据规模,以及命中率优化,是非常需要细心分析的。

l  实景分析: 前端请求先连接缓存,缓存未命中连接数据库,进行查询,未命中状态比单纯连接数据库查询多了一次连接和查询的操作;如果缓存命中率很低,则这个额外的操作非但不能提高查询效率,反而为系统带来了额外的负载和复杂性,得不偿失。

n  相关评估类似于热点数据表的介绍。

n  善于利用内存,请注意数据存储的格式及压缩算法。

l  Key-value 方案繁多,本培训文档暂不展开。

缓存结合数据库的写入

l  利用缓存不但可以减少数据读取请求,还可以减少数据库写入i/o压力

l  缓存实时更新,数据库异步更新

n  缓存实时更新数据,并将更新记录写入队列

n  可以使用类似mq的队列产品,自行建立队列请注意使用increment来维持队列序号。

n  不建议使用 get 后处理数据再set的方式维护队列

l  测试范例:

l  范例1

$var=Memcache_get($memcon,”var”);

$var++;

memcache_set($memcon,”var”,$var);

这样一个脚本,使用apache ab去跑,100个并发,跑10000次,然后输出缓存存取的数据,很遗憾,并不是1000,而是5000多,6000多这样的数字,中间的数字全在 get & set的过程中丢掉了。

原因,读写间隔中其他并发写入,导致数据丢失。

l  范例2

用memcache_increment来做这个操作,同样跑测试

会得到完整的10000,一条数据不会丢。

l  结论: 用increment存储队列编号,用标记+编号作为key存储队列内容。

n  后台基于缓存队列读取更新数据并更新数据库

l  基于队列读取后可以合并更新

l  更新合并率是重要指标

l  实战范例:

某论坛热门贴,前端不断有views=views+1数据更新请求。

缓存实时更新该状态

后台任务对数据库做异步更新时,假设执行周期是5分钟,那么五分钟可能会接收到这样的请求多达数十次乃至数百次,合并更新后只执行一次update即可。

类似操作还包括游戏打怪,生命和经验的变化;个人主页访问次数的变化等。

n  异步更新风险

l  前后端同时写,可能导致覆盖风险。

l  使用后端异步更新,则前端应用程序就不要写数据库,否则可能造成写入冲突。一种兼容的解决方案是,前端和后端不要写相同的字段。

l  实战范例:

用户在线上时,后台异步更新用户状态。

管理员后台屏蔽用户是直接更新数据库。

结果管理员屏蔽某用户操作完成后,因该用户在线有操作,后台异步更新程序再次基于缓存更新用户状态,用户状态被复活,屏蔽失效。

l  缓存数据丢失或服务崩溃可能导致数据丢失风险。

l  如缓存中间出现故障,则缓存队列数据不会回写到数据库,而用户会认为已经完成,此时会带来比较明显的用户体验问题。

l  一个不彻底的解决方案是,确保高安全性,高重要性数据实时数据更新,而低安全性数据通过缓存异步回写方式完成。此外,使用相对数值操作而不是绝对数值操作更安全。

n  范例:支付信息,道具的购买与获得,一旦丢失会对用户造成极大的伤害。而经验值,访问数字,如果只丢失了很少时间的内容,用户还是可以容忍的。

n  范例:如果使用 Views=Views+…的操作,一旦出现数据格式错误,从binlog中反推是可以进行数据还原,但是如果使用Views=特定值的操作,一旦缓存中数据有错误,则直接被赋予了一个错误数据,无法回溯!

l  异步更新如出现队列阻塞可能导致数据丢失风险。

l  异步更新通常是使用缓存队列后,在后台由cron或其他守护进程写入数据库。

l  如果队列生成的速度>后台更新写入数据库的速度,就会产生阻塞,导致数据越累计越多,数据库响应迟缓,而缓存队列无法迅速执行,导致溢出或者过期失效。

n  建议使用内存队列产品而不使用memcache 来进行缓存异步更新。

总结